Evaluate the surface integral

1) $\iint_{S} x^2 yz \, dS$, S is the part of the plane z = 1 + 2x + 3y that lies above the rectangle $[0,3] \times [0,2]$.

2) $\iint_{S} xy \, dS$, *S* is the triangular region with vertices (1, 0, 0), (0, 2, 0), and (0, 0, 2).

$\sqrt{6}$
6

3) $\iint_{S} yz \, dS$, S is the part of the plane x + y + z = 1 that lies in the first octant.

$\sqrt{3}$
24

4) $\iint_{S} x^{2} z^{2} dS$, S is the part of the cone $z^{2} = x^{2} + y^{2}$ that lies between the planes z = 1 and z = 3.

$$\frac{364\sqrt{2}}{3}\pi$$

5) $\iint_{S} z \, dS, S \text{ is the surface } x = y + 2z^2, \ 0 \le y \le 1, \ 0 \le z \le 1.$

$13\sqrt{2}$
12

6) $\iint_{S} xy \, dS$, S is the boundary of the region enclosed by the cylinder $x^2 + z^2 = 1$ and the planes y = 0 and x + y = 2

$$-\frac{1}{4}\left(8+\sqrt{2}\right)\pi$$

7) $\iint_{S} (x^2 z + y^2 z) dS$, S is the hemisphere $x^2 + y^2 + z^2 = 4$, $z \ge 0$

8) $\iint_{S} \sqrt{1 + x^2 + y^2} \, dS, \ S \text{ is the helicoid with vector equation } \vec{\mathbf{r}}(u, v) = u \cos v \, \mathbf{i} + u \sin v \, \mathbf{j} + v \, \mathbf{k}, \ 0 \le u \le 1, \ 0 \le v \le \frac{\pi}{2}.$

 $\frac{4}{3}\pi$

Evaluate the surface integral $\iint_{S} \vec{F} \cdot d\vec{S}$ for the given vector field \vec{F} and the oriented surface *S*. In other words, find the flux of \vec{F} across *S*. For closed surfaces, use the positive orientation.

9) $\vec{\mathbf{F}}(x, y, z) = xy \,\mathbf{i} + 4x^2 \,\mathbf{j} + yz \,\mathbf{k}$, S is the surface $z = xe^y$, $0 \le x \le 1$, $0 \le y \le 1$, with upward orientation.

1-e

10) $\vec{\mathbf{F}}(x, y, z) = x\mathbf{i} + y\mathbf{j} + z^4\mathbf{k}$, *S* is the part of the cone $z = \sqrt{x^2 + y^2}$ beneath the plane z = 1 with downward orientation.

11) $\vec{\mathbf{F}}(x, y, z) = y \mathbf{j} - z \mathbf{k}$, *S* consists of the paraboloid $y = x^2 + z^2$, $0 \le y \le 1$, and the disk $x^2 + z^2 \le 1$, y = 1.

0

12) $\vec{\mathbf{F}}(x, y, z) = x\mathbf{i} + 2y\mathbf{j} + 3z\mathbf{k}$, *S* is the cube with vertices $(\pm 1, \pm 1, \pm 1)$.

48

13) The temperature at the point (x, y, z) in a substance with conductivity K = 6.5 is $u(x, y, z) = 2y^2 + 2z^2$. Find the rate of heat flow inward across the cylindrical surface $y^2 + z^2 = 6$, $0 \le x \le 4$.

1248π